If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+192x-512=0
a = -16; b = 192; c = -512;
Δ = b2-4ac
Δ = 1922-4·(-16)·(-512)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(192)-64}{2*-16}=\frac{-256}{-32} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(192)+64}{2*-16}=\frac{-128}{-32} =+4 $
| 2x+165=180 | | 11=9+k/8 | | 11^(y+8)=9 | | 19n+-4n+-12n+2n=-15 | | 180*(n-2)/n=177.5 | | 12-x+x+12-x+x=156 | | (1/8)y=-12 | | 2(5a)=10a | | 512=-16x^2+192x | | 180*(n-2)/n=165 | | 0=x/4-1 | | 180*(n-2)/n=174 | | 180*(n-2)/n=156 | | 6-9x=180 | | 4a+8+7=15 | | 18y-14y+3y-5y=18 | | 17u-8.5=0 | | -6+n/8=-4 | | 5x+x+5x+x=150 | | .3175x=174.4 | | 20-4x=6x+4 | | 7x+94=180 | | -3c+-13c+3c=13 | | -16x^2+96x=44 | | 5x≥=25 | | t+5t-5t=15 | | 5x/8-(5/14)=0 | | 2n-3=7=n=5 | | 4a-2a-a-a+4a=20 | | 2.6q-1.7-3.7q=-2.1q-1.1 | | 7+2x=x+14 | | 3(1−9a)+22a=2(2a−9)−15 |